
Thomas Finley, tomf@cs.cornell.edu

Linear Algebra
A subspace is a set S ⊆ R

n such that 0 ∈ S and ∀x,y ∈ S, α, β ∈
R . αx + βy ∈ S.

x ∈ R
n is a linear combination of v1, · · · ,vk if ∃β1, · · · , βk ∈ R

such that x = β1v1 + · · · + βkvk.
The span of {v1, . . . ,vk} is the set of all vectors in R

n that
are linear combinations of v1, . . . ,vk.

A basis B of subspace S, B = {v1, . . . ,vk} ⊂ S has
Span(B) = S and all vi linearly independent.

The dimension of S is |B| for a basis B of S.
For subspaces S, T with S ⊆ T , dim(S) ≤ dim(T), and fur-

ther if dim(S) = dim(T), then S = T .
A linear transformation T : R

n → R
m has ∀x,y ∈ R

n, α, β ∈
R . T (αx + βy) = αT (x) + βT (y). Further, ∃A ∈ R

m×n such
that ∀x . T (x) ≡ Ax.

For two linear transformations T : R
n → R

m, S : R
m → R

p,
S◦T ≡ S(T (x)) is linear transformation. (T (x) ≡ Ax)∧(S(y) ≡
By) ⇒ (S ◦ T)(x) ≡ BAx.

The matrix’s row space is the span of its rows, its column
space or range is the span of its columns, and its rank is the
dimension of either of these spaces.

For A ∈ R
m×n, rank(A) ≤ min(m,n). A has full row (or

column) rank if rank(A) = m (or n).
A diagonal matrix D ∈ R

n×n has dj,k = 0 for j 6= k. The
diagonal identity matrix I has ij,j = 1.

The upper (or lower) bandwidth of A is max |i− j| among i, j
where i ≥ j (or i ≤ j) such that Ai,j 6= 0.

A matrix with lower bandwidth 1 is upper Hessenberg.
For A,B ∈ R

n×n, B is A’s inverse if AB = BA = I. If such
a B exists, A is invertible or nonsingular. B = A−1.

The inverse of A is A−1 = [x1, · · · ,xn] where Axi = ei.
For A ∈ R

n×n the following are equivalent: A is nonsingular,
rank(A) = n, Ax = b is solvable for any b, Ax = 0 iff x = 0.

The inner product of x,y ∈ R
n is xT y =

∑n
i=1 xiyi.

Vectors x,y ∈ R
n are orthogonal if xT y = 0.

The nullspace or kernel of A ∈ R
m×n is {x ∈ R

n : Ax = 0}.
For A ∈ R

m×n, Range(A) and Nullspace(AT) are orthogonal
complements, i.e., x ∈ Range(A),y ∈ Nullspace(AT) ⇒ xT y =
0. For all p ∈ R

m, there exist unique x and y so that p = x+y.
For a permutation matrix P ∈ R

n×n, PA permutes the rows
of A, AP the columns of A. P−1 = PT .

Gaussian Elimination
GE produces a factorization A = LU , GEPP PA = LU .
Plain GE

1: for k = 1 to n − 1 do

2: if akk = 0 then stop
3: ℓk+1:n,k = ak+1:n,k/akk

4: ak+1:n,k:n = ak+1:n,k:n−
ℓk+1:n,kak,k:n

5: end for

Backward Substitution

1: x = zeros(n, 1)
2: for j = n to 1 do

3: xj =
wj − uj,j+1:nxj+1:n

uj,j

4: end for

GE with Partial Pivoting

1: for k = 1 to n − 1 do

2: γ = argmax
i∈{k+1,...,n}

|aik|
3: a[γ,k],k:n = a[k,γ],k:n

4: ℓ[γ,k],1:k−1 = ℓ[k,γ],1:k−1

5: pk = γ
6: ℓk:n,k = ak:n,k/akk

7: ak+1:n,k:n = ak+1:n,k:n−
ℓk+1:n,kak,k:n

8: end for

To solve Ax = b, factor A = LU (or A = PT LU), solve
Lw = b (or Lw = b̂ where b̂ = Pb) for w using forward sub-
stitution, then solve Ux = w for x using backward substitution.
The complexity of GE and GEPP is 2

3n3 + O(n2). GEPP en-
counters an exact 0 pivot iff A is singular.

For banded A, L + U has the same bandwidths as A.

Norms
A vector norm function ‖ · ‖ : R

n → R satisfies:
1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = ~0.
2. ‖γx‖ = |γ| · ‖x‖ for all γ ∈ R, and all x ∈ R

n.
3. ‖x + y‖ ≤ ‖x‖ + ‖y‖, for all x, y ∈ R

n.
Common norms include:

1. ‖x‖1 = |x1| + |x2| + · · · + |xn|
2. ‖x‖2 =

√

x2
1 + x2

2 + · · · + x2
n

3. ‖x‖∞ = lim
p→∞

(|x1|p + · · · + |xn|p)
1
p = max

i=1..n
|xi|

An induced matrix norm is ‖A‖� = supx6=0
‖Ax‖�

‖x‖�
. It satisfies

the three properties of norms.
∀x ∈ R

n, A ∈ R
m×n, ‖Ax‖� ≤ ‖A‖�‖x‖�.

‖AB‖� ≤ ‖A‖�‖B‖�, called submultiplicativity.
aT b ≤ ‖a‖2‖b‖2, called Cauchy-Schwarz inequality.
1. ‖A‖∞ = maxi=1,...,m

∑n
j=1 |ai,j | (max row sum).

2. ‖A‖1 = maxj=1,...,n

∑m
i=1 |ai,j | (max column sum).

3. ‖A‖2 is hard: it takes O(n3), not O(n2) operations.

4. ‖A‖F =
√

∑n
i=1

∑m
j=1 a2

i,j . ‖ · ‖F often replaces ‖ · ‖2.

Numerical Stability
Six sources of error in scientific computing: modeling errors, mea-
surement or data errors, blunders, discretization or truncation
errors, convergence tolerance, and rounding errors.

±
︸︷︷︸

sign

d1.d2d3 · · · dt
︸ ︷︷ ︸

mantissa

× β
︸︷︷︸

base

exponent
︷︸︸︷

e
For single and double:

t = 24, e ∈ {−126, . . . , 127}

t = 53, e ∈ {−1022, . . . , 1023}

The relative error in x̂ approximating x is |x̂−x|
|x| .

Unit roundoff or machine epsilon is ǫmach = β−t+1. Arith-
metic operations have relative error bounded by ǫmach.

E.g., consider z = x − y with input x, y. This program has
three roundoff errors. ẑ = ((1 + δ1)x − (1 + δ2)y) (1+ δ3), where

δ1, δ2, δ3 ∈ [−ǫmach, ǫmach]. |z−ẑ|
|z| =

|(δ1+δ3)x−(δ2+δ3)y+O(ǫ2mach)|
|x−y|

The bad case is where δ1 = ǫmach, δ2 = −ǫmach, δ3 = 0:
|z−ẑ|
|z| = ǫmach

|x+y|
|x−y| Inaccuracy if |x + y| ≫ |x − y| called catas-

trophic calcellation.

Conditioning & Backwards Stability
A problem instance is ill conditioned if the solution is sensitive to
perturbations of the data. For example, sin 1 is well conditioned,
but sin 12392193 is ill conditioned.

Suppose we perturb Ax = b by (A + E)x̂ = b + e where
‖E‖
‖A‖ ≤ δ, ‖e‖‖b‖ ≤ δ. Then ‖x̂+x‖

‖x‖ ≤ 2δκ(A) + O(δ2), where

κ(A) = ‖A‖‖A−1‖ is the condition number of A.

1. ∀A ∈ R
n×n, κ(A) ≥ 1.

2. κ(I) = 1.

3. If γ 6= 0, κ(γA) = κ(A).

4. For diagonal D and all p,
‖D‖p = maxi=1..n |dii|.
So, κ(D) = maxi=1..n |dii|

mini=1..n |dii| .

If κ(A) ≥ 1
ǫmach

, A may as well be singular.
An algorithm is backwards stable if in the presence of roundoff

error it returns the exact solution to a nearby problem instance.
GEPP solves Ax = b by returning x̂ where (A + E)x̂ = b.

It is backwards stable if ‖E‖∞

‖A‖∞
≤ O(ǫmach). With GEPP,

‖E‖∞

‖A‖∞
≤ cnǫmach + O(ǫ2mach), where cn is worst case exponen-

tial in n, but in practice almost always low order polynomial.

Combining stability and conditioning analysis yields ‖x̂−x‖
‖x‖ ≤

cn · κ(A)ǫmach + O(ǫ2mach).

Determinant
The determinant det : R

n×n → R satisfies:

1. det(AB) = det(A) det(B).
2. det(A) = 0 iff A singular.
3. det(A) = det(AT).

4. det(L) = ℓ1,1ℓ2,2 · · · ℓn,n

for triangular L.

To compute det(A) factor A = PT LU . det(P) = (−1)s where
P performs s swaps, det(L) = 1. When calculating det(U), be-
ware of overflow!

Orthogonal Matrices
For Q ∈ R

n×n, these statements are equivalent:
1. QT Q = QQT = I (i.e., Q is orthogonal)
2. The ‖ · ‖2 = 1 for each row and column of Q. The inner

product of any row (or column) with another is 0.
3. For all x ∈ R

n, ‖Qx‖2 = ‖x‖2.
A matrix Q ∈ R

m×n with m > n has orthonormal columns if the
columns are orthonormal, and QT Q = I. The product of orthog-
onal matrices is orthogonal. For orthogonal Q, ‖QA‖2 = ‖A‖2

and ‖AQ‖2 = ‖A‖2.

Positive Definite, A = LDL
T

A ∈ R
n×n is positive definite (PD) (or semidefinite (PSD)) if

xT Ax > 0 (or xT Ax ≥ 0).
When LU -factorizing symmetric A, the result is A = LDLT ;

L is unit lower triangular, D is diagonal. A is SPD iff D has
all positive entries. The Cholesky factorization is A = LDLT =

LD1/2D1/2LT = GGT . Can be done directly in n3

3 +O(n2) flops.
If G’s diagonal is positive, A is SPD.

To solve Ax = b for SPD A, factor A = GGT , solve Gw = b

by forward substitution, then solve GT x = w with backwards

substitution, which takes n3

3 + O(n2) flops.
For A ∈ R

m×n, if rank(A) = n, then AT A is SPD.

QR-factorization
For any A ∈ R

m×n with m ≥ n, we can factor A = QR, where
Q ∈ R

m×m is orthogonal, and R = [R1 0]T ∈ R
m×n is upper

triangular. rank(A) = n iff R1 is invertible.
Q’s first n (or last m−n) columns form an orthonormal basis

for span(A) (or nullspace(AT)).

A Householder reflection is H = I − 2vvT

vT v
. H is symmetric

and orthogonal. Explicit H.H. QR-factorization is:

1: for k = 1 : n do

2: v = A(k : m, k) ± ‖A(k : m, k)‖2e1

3: A(k : m, k : n) =
(

I − 2vvT

vT v

)

A(k : m, k : n)

4: end for

We get HnHn−1 · · ·H1A = R, so then, Q = H1H2 · · ·Hn. This
takes 2mn2 − 2

3n3 + O(mn) flops.
Givens requires 50% more flops. Preferable for sparse A.
The Gram-Schmidt produces a skinny/reduced QR-

factorization A = Q1R1, where Q1 ∈ R
m×n has orthonormal

columns. The Gram-Schmidt algorithm is:
Left Looking

1: for k = 1 : n do

2: qk = ak

3: for j = 1 : k − 1 do

4: R(j, k) = qT
j ak

5: qk = qk − R(j, k)qj

6: end for

7: R(k, k) = ‖qk‖2

8: qk = qk/R(k, k)
9: end for

Right Looking

1: Q = A
2: for k = 1 : n do

3: R(k, k) = ‖qk‖2

4: qk = qk/R(k, k)
5: for j = k + 1 : n do

6: R(k, j) = qT
k qj

7: qj = qj − R(k, j)qk

8: end for

9: end for

In left looking, let line 4 be R(j, k) = qT
j qk for modified G.S.

to make it backwards stable.

Basic Linear Algebra Subroutines
0. Scalar ops, like

√

x2 + y2. O(1) flops, O(1) data.

1. Vector ops, like y = ax + y. O(n) flops, O(n) data.

2. Matrix-vector ops, like rank-one update A = A + xyT .
O(n2) flops, O(n2) data.

3. Matrix-matrix ops, like C = C + AB. O(n3) flops, O(n2)
data.

Use the highest BLAS level possible. Operators are architec-
ture tuned, e.g., data processed in cache-sized bites.

Linear Least Squares
Suppose we have points (u1, v1), . . . , (u5, v5) that we want to fit
a quadratic curve au2 + bu + c through. We want to solve for:

u2
1 u1 1
...

...
...

u2
5 u5 1

a
b
c

=

v1

...
v5

This is overdetermined so an
exact solution is out. Instead,
find the least squares solution
x that minimizes ‖Ax − b‖2.

For the method of normal equations, solve for x in AT Ax =

AT b with Cholesky factorization. This takes mn2 + n3

3 +O(mn)
flops. It is conditionally but not backwards stable: AT A doubles
the condition number.

Alternatively, factor A = QR. Let c = [c1 c2]T = QT b.

The least squares solution is x = R−1
1 c1.

If rank(A) = r and r < n (rank deficient), factor A =
UΣV T , let y = V T x and c = UT b. Then, min ‖Ax − b‖2 =

min
√

∑r
i=1(σiyi − ci)2 +

∑m
i=r+1 c2

i , so yi = ci

σi
. For i = r + 1 :

n, yi is arbitrary.

Singular Value Decomposition
For any A ∈ R

m×n, we can express A = UΣV T such
that U ∈ R

m×m and V ∈ R
n×n are orthogonal, and Σ =

diag(σ1, · · · , σp) ∈ R
m×n where p = min(m,n) and σ1 ≥ σ2 ≥

· · · ≥ σp ≥ 0. The σi are singular values.
1. Matrix 2-norm, where ‖A‖2 = σ1.
2. The condition number κ2(A) = ‖A‖2‖A−1‖2 = σ1

σn
, or rect-

angular condition number κ2(A) = σ1

σmin(m,n)
. Note that

κ2(A
T A) = κ2(A)2.

3. For a rank k approximation to A, let Σk =
diag(σ1, · · · , σk,0T). Then Ak = UΣkV T . rank(Ak) ≤ k
and rank(Ak) = k iff σk > 0. Among rank k or lower
matrices, Ak minimizes ‖A − Ak‖2 = σk+1.

4. Rank determination, since rank(A) = r equals the num-
ber of nonzero σ, or in machine arithmetic, perhaps the
number of σ ≥ ǫmach × σ1.

A = UΣV T =
[

U1 U2

]
[

Σ(1 : r, 1 : r) 0
0 0

] [
V T

1

V T
2

]

See that range(U1) = range(A). The SVD gives an orthonormal
basis for the range and nullspace of A and AT .

Compute the SVD by using shifted QR on AT A.

Information Retrival & LSI
In the bag of words model, wd ∈ R

m, where wd(i) is the (per-
haps weighted) frequency of term i in document d. The corpus
matrix is A = [w1, · · · ,wn] ∈ R

m×n. For a query q ∈ R
m, rank

documents according to a qT wd

‖wd‖2
score.

In latent semantic indexing, you do the same, but in a
k dimensional subspace. Factor A = UΣV T , then define
A∗ = Σ1:k,1:kV T

:,1:k ∈ R
k×n. Each w∗

d = A∗
:,d = UT

:,1:kwd, and

q∗ = UT
:,1:kq.

In the Ando-Lee analysis, for a corpus with k topics, for
t ∈ 1 : k and d ∈ 1 : n, let Rt,d ≥ 0 be document d’s relevance to
topic t. ‖R:,d‖2 = 1. True document similarity is RRT = R

n×n,
where entry (i, j) is relevance of i to j. Using LSI, if A contains
information about RRT , then (A∗)T A∗ will approximate RRT

well. LSI depends on even distribution of topics, where distribu-

tion is ρ =
maxt ‖Rt,:‖2

mint ‖Rt,:‖2
. Great for ρ is near 1, but if ρ ≫ 1, LSI

does worse.

Complex Numbers
Complex numbers are written z = x + iy ∈ C for i =

√
−1. The

real part is x = ℜ(z). The imaginary part is y = ℜ(z).
The conjugate of z is z = x − iy. Ax = (Ax), AB = (AB)

The absolute value of z is |z| =
√

x2 + y2.

The conjugate transpose of x is xH = (x)
T
. A ∈ C

n×n is
Hermitian or self-adjoint if A = AH .

If QHQ = I, Q is unitary.

Eigenvalues & Eigenvectors
For A ∈ C

n×n, if Ax = λx where x 6= 0, x is an eigenvector of
A and λ is the corresponding eigenvalue.

Remember, A−λx is singular iff det(A−λI) = 0. With λ as
a variable, det(A − λI) is A’s characteristic polynomial.

For nonsingular T ∈ C
n×n, T−1AT (the similarity transfor-

mation) is similar to A. Similar matrices have the same char-
acteristic polynomial and hence the same eigenvalues (though
probably different eigenvectors). This relationship is reflexive,
transitive, and symmetric.

A is diagonalizable if A is similar to a diagonal matrix
D = T−1AT . A’s eigenvalues are D’s diagonals, and the eigen-
vectors are columns of T since AT:,i = Di,iT:,i. A is diagonaliz-
able iff it has n linearly independent eigenvectors.

For symmetric A ∈ R
n×n, A is diagonalizable, has all real

eigenvalues, and the eigenvectors can be the columns of an or-
thogonal matrix Q where A = QDQT is the eigendecomposition
of A. Further, for symmetric A:

1. The singular values are absolute values of eigenvalues.

2. Is SPD (or SPSD) iff eigenvalues > 0 (or ≥ 0).

3. For SPD, singular values equal eigenvalues.

4. For B ∈ R
m×n, m ≥ n, singular values of B are the square

roots of BT B’s eigenvalues.

For any A ∈ C
n×n, the Schur form of A is A = QTQH with

unitary Q ∈ C
n×n and upper triangular T ∈ C

n×n.

In this sheet I denote λ|max | = maxλ∈{λ1,...,λn} |λ|.
For B ∈ C

n×n, then limk→∞ Bk = 0 if λ|max |(B) < 1.

Power Methods for Eigenvalues
x(k+1) = Ax(k) converges to λ|max |(A)’s eigenvector.

Once you find an eigenvector x, find the associated eigenvalue

λ through the Raleigh quotient λ = x(k)T
Ax(k)

x(k)T
x(k)

.

The inverse shifted power method is x(k+1) = (A−σI)−1x(k).
If A has eigenpairs (λ1,u1), . . . , (λn,un), then (A − σI)−1 has

eigenpairs
(

1
λ1−σ ,u1

)

, . . . ,
(

1
λn−σ ,un

)

. Factor A = QHQT

where H is upper Hessenberg.

To factor A = QHQT , find successive Householder reflections
H1,H2, . . . that zero out rows 2 and lower of column 1, rows 3
and lower of column 2, etc. Then Q = HT

1 · · ·HT
n−2.

1: A(0) = A
2: for k = 0, 1, 2, . . . do

3: Set A(k) − σ(k)I = Q(k)R(k)

4: A(k+1) = R(k)Q(k) + σ(k)I
5: end for

A(k) is similar to A by the
orthogonal transform U (k) =
Q(0) · · ·Q(k+1). Perhaps
choose σ(k) as eigenvalues of
submatrices of A.

Arnoldi and Lanczos
Given A ∈ R

n×n and unit length q1 ∈ R
n, output Q,H such

that A = QHQT . Use Lanczos for symmetric A.

Arnoldi

1: for k = 1 : n − 1 do

2: q̃k+1 = Aqk

3: for ℓ = 1 : k do

4: H(ℓ, k) = qT
ℓ q̃k+1

5: q̃k+1 = q̃k+1 − H(ℓ, k)qℓ

6: end for

7: H(k + 1, k) = ‖q̃k+1‖2

8: qk+1 = q̃k+1

H(k+1,k)

9: end for

Lanczos

1: β0 = ‖w0‖2

2: for k = 1, 2, . . . do

3: qk = wk−1

βk−1

4: uk = Aqk

5: vk = uk − βk−1qk−1

6: αk = qT
k vk

7: wk = vk − αkqk

8: βk = ‖wk‖2

9: end for

For Lanczos, the αk and βk are diagonal and subdiagonal en-
tries of the Hermitian tridiagonal Tk, and we have H in Arnoldi.
After very few iterations of either method, the eigenvalues of Tk

and H will be excellent approximations to the “extreme” eigen-
values of A.

For k iterations, Arnoldi is O(nk2) times and O(nk) space,
Lanczos is O(nk)+k ·M time (M is time for matrix-vector mul-
tiplication) and O(nk) space, or O(n + k) space if old qk’s are
discarded.

Iterative Methods for Ax = b
Useful for sparse A where GE would cause fill-in.

In the splitting method, A = M − N and Mv = c is easily
solvable. Then, x(k+1) = M−1

(
Nx(k) + b

)
. If it converges, the

limit point x∗ is a solution to Ax = b.
The error is e(k) = (M−1N)ke0, so splitting methods con-

verge if λ|max |(M
−1N) < 1.

In the Jacobi method, consider M as the diagonals of A. This
will fail if A has any zero diagonals.

Conjugate Gradient
Conjugate gradient iteratively solves Ax = b for SPD A. It is
derived from Lanczos and exploits that if A is SPD then T is
SPD. It produces the exact solution after n iterations. Time per
iteration is O(n) + M.

1: x(0) = arbitrary (0 is okay)
2: r0 = b − Ax(0)

3: p0 = r0

4: for k=0,1,2,. . . do

5: αk = (rT
k rk)/(pT

k Apk)
6: x(k+1) = x(k) + αkpk

7: rk+1 = rk − αkApk

8: βk+1 = (rT
k+1rk+1)/(rT

k rk)
9: pk+1 = rk+1 − βk+1pk

10: end for

Error is reduced by
(
√

κ(A) − 1)/(
√

κ(A) + 1)
per iteration. Thus, for
κ(A) = 1, CG converges
after 1 iteration. To speed
up CG, use a perconditioner
M such that κ(MA) ≪ κ(A)
and solve MAx = Mb

instead.

Multivariate Calculus
Provided f : R

n → R, the gradient and Hessian are

∇f =

δf
δx1

...
δf

δxn

 ,∇2f =

δ2f
δx2

1

δ2f
δx1δx2

· · · δ2f
δx1δxn

...
...

δ2f
δxnδx1

δ2f
δxnδx2

· · · δ2f
δx2

n

If f is c2 (2nd partials are all continuous), ∇2f is symmetric.
The Taylor expansion for f is
f(x + h) = f(x) + hT∇f(x) + 1

2h
T∇2f(x)h + O(‖h‖3)

Provided f : R
n → R

m, the Jacobian is

∇f =

δf1/δx1 · · · δf1/δxn

...
. . .

...
δfm/δx1 · · · δfm/δxn

f ’s Taylor expansion is f(x + h) = f(x) + ∇f(x)h + O(‖h‖2).
A linear (or quadratic) model approximates a function f by

the first two (or three) terms of f ’s Taylor expansion.

Nonlinear Equation Solving
Given f : R

n → R
m, we want x such that f(x) = 0.

In fixed point iteration, we choose g : R
n → R

n such that
x(k+1) = g(x(k)). If it converges to x∗, g(x∗) − x∗ = 0.

g(x(k)) = g(x∗) + ∇g(x∗)(x(k) − x∗) + O(‖x(k) − x∗‖2) For
small e(k) = x(k) − x∗, ignore the last term. If ∇g(x∗) has
λ|max | < 1, then x(k) → x∗ as ‖e(k)‖ ≤ ck‖e(0)‖ for large k,
where c = λ|max | + ǫ, where ǫ is the influence of the ignored last
term. This indicates a linear rate of convergence.

Suppose for ∇g(x∗) = QTQH , T is non-normal, i.e., T ’s su-
perdiagonal portion is large relative to the diagonal. Then this
may not converge as ‖(∇g(x∗))k‖ initially grows!

In Newton’s method, x(k+1) = x(k) − (∇f(x(k)))−1f(x(k)).
This converges quadratically, i.e., ‖e(k+1)‖ ≤ c‖e(k)‖2.

Automatic differentiation takes advantage of the notion that
a computer program is nothing but arithmetic operations, and
one can apply the chain rule to get the derivative. This may be
used to compute Jacobians and determinants.

Optimization
In continuous optimization, f : R

n → R is the
objective function, g : R

n → R
m holds equal-

ity constraints, h : R
n → R

p holds inequality
constraints.

min f(x)
s.t. g(x) = 0

h(x) ≥ 0

We did unrestricted optimization min f(x) in the course.
A ball is a set B(x, r) = {y ∈ R

n : ‖x − y‖ < r}.
We have local minimizers x∗ which are the best in a region,

i.e., ∃r > 0 such that f(x∗) ≤ f(x) for all x ∈ B(x∗, r). A global
minizer is the best local minimizer.

Assume f is c2. If x∗ is a local minimizer, then ∇f(x∗) = 0

and ∇2f(x∗) is PSD. Semi-conversely, if ∇f(x∗) = 0 and
∇2f(x∗) is PD, then x∗ is a local minimizer.

Steepest Descent
Go where the function (locally) decreases most rapidly via
x(k+1) = x(k)−αk∇f(x(k). αk is explained later. SD is stateless:
depends only on the current point. Too slow.

Newton’s Method for Unconstrained Min.
Iterate by x(k+1) = x(k) − (∇2f(x(k)))−1∇f(x(k)), derived
by solving for where ∇f(x∗) = 0. If ∇2f(x(k)) is PD and
∇f(x(k)) 6= 0, the step is a descent direction.

What if the Hessian isn’t PD? Use (a) secant method, (b)
direction of negative curvature where hT∇2f(x(k))h < 0 where
h or −h (doesn’t work well in practice), (c) trust region idea
so h = −(∇2f(x(k)) + tI)−1∇f(x(k)) (interpolation of NMUM
and SD), (d) factor ∇2f(x(k)) by Cholesky when checking for
PD, detect 0 pivots, modify that diagonal in ∇2f(x(k)) and keep
going (unjustified by theory, but works in practice).

Line Search
Line search, given x(k) and step h (perhaps derived from SD or
NMUM), finds a α > 0 for x(k+1) = x(k) + αh.

In exact line search, optimize min f(x(k) + αh) over α.
Frowned upon because it’s computationally expensive.

In Armijo or backtrack line search, initialize α. While
f(x(k) + αh) > f(x(k)) + 0.1α∇f(x(k))T h, halve α.

Secant/quasi Newton methods use an approximate always PD
∇2f . In Broyden-Fletcher-Goldfarb-Shanno:

1: B0 = initial approximate Hessian {OK to use I.}
2: for k = 0, 1, 2, . . . do

3: sk = −B−1
k ∇f(x(k))

4: x(k+1) = x(k) + αksk {Use special line search for αk!}
5: yk = ∇f(x(k+1)) −∇f(x(k))

6: Bk+1 = Bk +
yky

T
k

αyT
k sk

− Bksks
T
k Bk

sT
k Bksk

7: end for

By maintaining Bk in factored form, can iterate in O(n2) flops.
Bk is SPD provided sT

k y > 0 (use line search to increase αk if
needed). The secant condition αkBk+1sk = yk holds. If BFCS
converges, it converges superlinearly.

Non-linear Least Squares
For g : R

n → R
m, m ≥ n, we want the x for min ‖g(x)‖2.

In the Gauss-Newton method, x(k+1) = x(k) − h where
h = (∇g(x)T∇g(x))−1∇g(x)T g(x). Note that h is a solution to
a linear least squares problem min ‖∇g(x(k))h − g(x(k))‖! GN
is derived by applying NMUM to to g(x)T g(x), and dropping a
resulting tensor (derivative of Jacobian). You keep the quadratic
convergence when g(x∗) = 0, since the tensor → 0 as k → ∞.

Ordinary Differential Equations
ODE (or PDE) has one (or multiple) independent variables.

In initial value problems, given dy
dt = f(y, t), y(t) ∈ R

n, and
y(0) = y0, we want y(t) for t > 0. Examples include:

1. Exponential growth/decay with dy
dt = ay, with closed form

y(t) = y0e
at. Growth if a > 0, decay if a < 0.

2. Ecological models, dyi

dt = fi(y1, . . . , yn, t) for species i =
1, . . . , n. yi is population size, fi encodes species relation-
ships.

3. Mechanics, e.g. wall-spring-block models for F = ma

(a = d2x
dt2) and F = −kx, so d2x

dt2 = −kx
m . Yields d[x,v]T

dt =
[

v −kx
m

]T
with y0 as initial position and velocity.

For stability of an ODE, let dy
dt = Ay for A ∈ C

n×n. The sta-
ble or neutrally spable or unstable case is where maxi ℜ(λi(A)) <
0 or = 0 or > 0 respectively.

In finite difference methods, approximate y(t) by discrete
points y0 (given), y1,y2, . . . so yk ≈ y(tk) for increasing tk.

For many IVPs and FDMs, if the local truncation error (er-
ror at each step) is O(hp+1), the global truncation error (error
overall) is O(hp). Call p the order of accuracy.

To find p, substitute the exact solution into FDM formula, in-
sert a remainder term +R on RHS, use a Taylor series expansion,
solve for R, keep only the leading term.

In Euler’s method, let yk+1 = yk + f(yk, tk)hk where hk =
tk+1 − tk is the step size, and y′ = f(y, t) is perhaps computed
by finite difference. p = 1, very low. Explicit!

A stiff problem has widely ranging time scales in the solu-
tion, e.g., a transient initial velocity that in the true solution
disappears immediately, chemical reaction rate variability over
temperature, transients in electical circuits. An explicit method
requires hk to be on the smallest scale!

Backward Euler has yk+1 = yk + hf(yk+1, tk+1). BE is im-
plicit (yk+1 on the RHS). If the original program is stable, any
h will work!

Miscellaneous
∑n±constant

k=1 kp = np+1

p+1 + O(np)

ax2 + bx + c = 0. r1, r2 = −b±
√

b2−4ac
2a . r1r2 = c

a
Exact arithmetic is slow, futile for inexact observations, and

NA relies on approximate algorithms.

41981E07411F9B01BDFF261940159373C07AC167405C5F3DC100037440E8659641759C66418EFA5D41558A37C1CBAF46C196E88040E50EFC413A42A6C160850FC12C8D9BC0CD2F0DC0BDE9B0

C123D876412D0624C0EABD7B402D214B3F0A4E5B4106D552406FFC2840F0964AC0949650409F429E403E7359C0BDD4B93F7FD8ACBFDE0F6BC09EC408C11BEDDC3F8F803940D97DF84093DC28

41B34BB341C05DA0420B176A4207D117C0F7A989419CDAD0C1F8DFAD41E5C5834195F1D1418B3D06422C6A75C22A4E18C22CDE3DC1ADE35D42013BB7C2285485C1E1663DC1ACDB1FC17A6DF7

40FA52A2411987CA40DCBDF541A44735BE00EB0F40DF3240C15A8A0540C35A3F4138F2D9410C2DC4414E9086C18EEABBC19026C0C063C6464158FAD9C16A1481C14D5925C106BD65C00537C9

4202D6BB41DB298A420D8B4D422654DBC058CB0D41B93638C2291BD441EA849341432BF140211A3B42192392C224B279C21A623CC1F39916422C9E28C2144CEFC1EF5BDCC2000AE5C11B4178

41CC3330412812684214CE7F4207333FC154BD9942075FB5C1F700B7412FCDD84074C80C403D08FD421673FCC1D5728FC1CAC47DC1D284A542037446C1BA6373C1FA17FAC1EF9B6CC014B26A

C163F2CCC074096EC1799FFE40E4FC1840C07B6E410D770A41FA3CBF412B7F75C088D8174091DC9D4102F598C17BC8FF3E23BEB940E2D9CBC1CB43A1C18DA47A4163CB5C41865279C101D174

4220409641D895594242E8CC4240AB99C1530BE941D3FC5AC2453B7B41F61FAF41867D4440E2374D4246F36CC2385596C24579EEC20E2C8C424E3ACEC2173FB7C223860AC218DC20C14C4D01

C0A6E2AC3FB233A9C11575FFBFDC81A64033140140A330D740D2515940E3266941A6486541983485415DC696C1832CAAC126A19E410CF23DC0D3BDEBC18BD0F53F812F1C4021EB80C1221B86

41F9E74341E49DC241F356E941F21CA1C0E5408E415C8840C220AAF941A2DF7E41C3770241B8E7C242073D67C22E7DC8C2316977C195288E4227CC9FC204D34FC2054DE7C1D27A3BC122FAC5

3F20F6F540239D6D407CE8FF4131C69FC0D9CC44416A05B0C0CF9E5C416196E23FF192CB414ABA62420A0178C180DBE7C10FB02FC0C938A140A01794C1ACE03DC121E557C102D79BC05A0B9A

4175D137410A666C41BA03F141A11609C119ADFE416CF000C1D3AC7840CF8936413BE95F4152284941EC4CD3C1483DF5C1BCE0F7C138674041D88129C199E0E9C1E35B6FC1AE0421BF0B7F9D

40E9B16D415B8F0240C2914D4151B42BBFC6AAC141448D07C16917974181226041685A324194A32E41CE5FA0C1E1375CC17115ADC0CFB430417742E8C1E0BD4FC171DEE7C12546BAC0FE0C27

41980F6140FA939942014021420F7E01C14930BE41C5771EC200F696414496D940291CDA40952454421D90C1C1A89B86C1C3FFE5C193999B41F97E2EC1C69876C201193DC1DA288C3FFE4D59

40329D993FFB03ED412BD3E6419ED013C029891B4180279EC0B155BC415D858F4025361D4107EE4B41E18AE3C19F2909C1551577C10EE2DC4144D1B9C1D025BAC14F6FEBC1073B6AC0959483

41E6259441B5FEB44208EE924228B899C11B6D7241C5B937C20911A441B72EEE40EC50BCC00D65FF4210A2CFC2113849C20CAC27C201171542046B73C1B0223EC1BBCC08C1CDDF00C13A5785

40F00474411D672E4027EED93F03DF7BC0850F2C4092866FC171638B4122D01C41A3035E41C4A1F841A87B85C1AB7D24C1A1FB1E40652E054180AB93C19F5F5BC1295F66C1426F7BC04297A0

415D4E0D41629AE44177E6A74195DAC5C0BF9F0E41541266C16230F3419DBEC9415618FB4199C3E042029A8BC2072CB5C1EC52F7C0FB2260418ED6C8C1FE42DBC19C13AFC08524F8C15C1E8A

C02FB43F40CB7D46C171D9F9C10C9FC53FAD827BBD1BED2040B11CA141180061412507F34190D6B5408539A9C18D564EC0F56DAD4158BA12C007AFE5C1581D463F9846B74093F7C0408EA433

