Thomas Finley, tomf@cs.cornell.edu

Linear Algebra

A subspace is a set $S \subseteq \mathbb{R}^{n}$ such that $\mathbf{0} \in S$ and $\forall \mathbf{x}, \mathbf{y} \in S, \alpha, \beta \in$
$\mathbb{R} . \alpha \mathbf{x}+\beta \mathbf{y} \in S$.
$\mathbf{x} \in \mathbb{R}^{n}$ is a linear combination of $\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}$ if $\exists \beta_{1}, \cdots, \beta_{k} \in \mathbb{R}$
such that $\mathbf{x}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{k} \mathbf{v}_{k}$.
The span of $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ is
The span of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is the set of all vectors in \mathbb{R}^{n} that are linear combinations of \mathbf{v}_{1}

A basis B of subspace $S, B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \subset S$ has $\operatorname{Span}(B)=S$ and all \mathbf{v}_{i} linearly independent.

The dimension of S is $|B|$ for a basis B of S
For subspaces S, T with $S \subseteq T, \operatorname{dim}(S) \leq \operatorname{dim}(T)$, and further if $\operatorname{dim}(S)=\operatorname{dim}(T)$, then $S=T$

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \alpha, \beta \in$ $\mathbb{R} \cdot T(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha T(\mathbf{x})+\beta T(\mathbf{y})$. Further, $\exists A \in \mathbb{R}^{m \times n}$ such
that $\forall \mathbf{x} . T(\mathbf{x}) \equiv A \mathbf{x}$ that $\forall \mathbf{x} . T(\mathbf{x}) \equiv A \mathbf{x}$.

For two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, $S \circ T \equiv S(T(\mathbf{x}))$ is linear transformation. $(T(\mathbf{x}) \equiv A \mathbf{x}) \wedge(S(\mathbf{y}) \equiv$ $B \mathbf{y}) \Rightarrow(S \circ T)(\mathbf{x}) \equiv B A \mathbf{x}$.

The matrix's row space is the span of its rows, its column space or range is the span of its columns, and its rank is the dimension of either of these spaces.

For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. A has full row (or column) rank if $\operatorname{rank}(A)=m($ or $n)$.

A diagonal matrix $D \in \mathbb{R}^{n \times n}$ has $d_{j, k}=0$ for $j \neq k$. The diagonal identity matrix I has $i_{j, j}=1$.

The upper (or lower) bandwidth of A is max $|i-j|$ among i, j where $i \geq j$ (or $i \leq j$) such that $A_{i, j} \neq 0$.

A matrix with lower bandwidth 1 is upper Hessenberg.
For $A, B \in \mathbb{R}^{n \times n}, B$ is A 's inverse if $A B=B A=I$. If such
B exists, A is inert B is $A^{-1}=\left[\mathbf{x}_{1}, \mathbf{x}_{n}\right]=A$
The inverse of A is $A^{-1}=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right]$ where $A \mathbf{x}_{i}=\mathbf{e}_{i}$.
For $A \in \mathbb{R} \quad A \mathbf{x}=\mathbf{b}$ is solvable for any $\mathbf{b}, A \mathbf{x}=0$ iff $\mathbf{x}=0$
The inner product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is $\mathbf{x}^{T} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$.
Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal if $\mathbf{x}^{T} \mathbf{y}=0$.
The nullspace or kernel of $A \in \mathbb{R}^{m \times n}$ is $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$. For $A \in \mathbb{R}^{m \times n}$, Range (A) and $\left.\operatorname{Null\text {space}(~} A^{T}\right)$ are orthogonal complements, i.e., $\mathbf{x} \in$ Range $(A), \mathbf{y} \in \mathbf{N}$ andspar $\mathbf{~} \mathbf{~} \in \mathbb{R}^{m}$ there exist unique $\Rightarrow \mathbf{x}^{\mathbf{y}} \mathbf{y}=$

For all $\mathbf{p} \in \mathbb{R}^{m}$, there exist unique \mathbf{x} and \mathbf{y} so that $\mathbf{p}=\mathbf{x}+\mathbf{y}$.
For a permutation matrix $P \in \mathbb{R}^{n \times n}, P A$ permutes the rows of $A, A P$ the columns of $A . P^{-1}=P^{T}$

Gaussian Elimination

GE produces a factorization $A=L U$, GEPP $P A=L U$.
Plain GE GE with Partial Pivoting

for $k=1$ to $n-1$ do	for $k=1$ to $n-1$ do
2: if $a_{k k}=0$ then stop	2: $\quad \gamma=\operatorname{argmax} \quad\left\|a_{i k}\right\|$
3: $\quad \ell_{k+1: n, k}=a_{k+1: n, k} / a_{k k}$	$\stackrel{i \in\{k+1, \ldots, n\}}{=}$,
$a_{k+1: n, k: n}=a_{k+1: n, k: n}-$, $]$,k:n $=a_{[k, \gamma],}$
$\ell_{k+1: n, k} a_{k, k: n}$	$\begin{aligned} & {[\gamma, k], 1: k} \\ & p_{k}=\gamma \end{aligned}$
5: end for	6: $\quad \ell_{k: n, k}=a_{k: n, k} / a_{k k}$
Backward Substitution	$a_{k+1: n, k: n}=a_{k+1:}$

Backward Substitution
2: for $j=n$ to 1 do
$\ell_{k+1: n, k} a_{k, k: n}$
2: for $j=n$ to 1 do
3: $\quad x_{j}=\underline{w_{j}-u_{j, j+1: n} x_{j+1: n}}$
8: end for
4: end for
To solve $A \mathbf{x}=\mathbf{b}$, factor $A=L U$ (or $A=P^{T} L U$), solve $L \mathbf{w}=\mathbf{b}$ (or $L \mathbf{w}=\hat{\mathbf{b}}$ where $\hat{\mathbf{b}}=P \mathbf{b}$) for \mathbf{w} using forward substitution, then solve $U \mathbf{x}=\mathbf{w}$ for \mathbf{x} using backward substitution. counters an exact 0 pivot iff A is singular.

For banded $A, L+U$ has the same bandwidths as A.

Norms

A vector norm function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies:

1. $\|\mathbf{x}\| \geq 0$, and $\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\overrightarrow{0}$.
2. $\|\gamma \mathbf{x}\|=|\gamma| \cdot\|\mathbf{x}\|$ for all $\gamma \in \mathbb{R}$, and all $\mathbf{x} \in \mathbb{R}^{n}$.
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$, for all x, \mathbb{R}^{n}
4. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$, for all $x, y \in \mathbb{R}^{n}$.

Common norms include:

1. $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\mid x_{n}$
2. $\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}=\max _{i=1 . . n}\left|x_{i}\right|$

An induced matrix norm is $\|A\|_{\square}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{\square}}{\|\mathbf{x}\|_{\square}}$. It satisfies the three properties of norms.
$\forall \mathbf{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n},\|A \mathbf{x}\|_{\square} \leq\|A\|_{\square}\|\mathbf{x}\|_{\square}$.
$\|A B\|_{\square} \leq\|A\|_{\square}\|B\|_{\square}$, called submultiplicativity.
$\mathbf{a}^{T} \mathbf{b} \leq\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2}$, called Cauchy-Schwarz inequality.

1. $\|A\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i, j}\right|$ (max row sum).
2. $\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i, j}\right|$ (max column sum).
3. $\|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1} \mid a_{i, j}($ max column sum).
4. $\|A\|_{2}$ is hard: it takes $O\left(n^{3}\right)$, not $O\left(n^{2}\right)$ operations.
5. $\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}^{2}} \cdot\|\cdot\|_{F}$ often replaces $\|\cdot\|_{2}$.

Numerical Stability

Six sources of error in scientific computing: modeling errors, measurement or data errors, blunders, discretization or truncation errors, convergence tolerance, and rounding errors.

$$
\underbrace{ \pm}_{\text {sign }} \underbrace{d_{1} \cdot d_{2} d_{3} \cdots d_{t}}_{\text {mantissa }} \times \underbrace{\beta}_{\text {base }} \overbrace{\substack{t=24, e \in\{-126, \ldots, 127\} \\ t=53, \in\{-102, \ldots, 1023\}}}^{\beta}
$$

The relative error in $\hat{\mathbf{x}}$ approximating \mathbf{x} is $\frac{|\hat{\mathbf{x}}-\mathbf{x}|}{|\mathbf{x}|}$.
Unit roundoff or machine epsilon is $\epsilon_{\text {mach }}=\beta^{-t+1}$. Arithmetic operations have relative error bounded by $\epsilon_{\text {mach }}$.
E.g., consider $z=x-y$ with input x, y. This program has three roundoff errors. $\hat{z}=\left(\left(1+\delta_{1}\right) x-\left(1+\delta_{2}\right) y\right)\left(1+\delta_{3}\right)$, where $\delta_{1}, \delta_{2}, \delta_{3} \in\left[-\epsilon_{\text {mach }}, \epsilon_{\text {mach }}\right] . \frac{|z-\hat{z}|}{|z|}=\frac{\left|\left(\delta_{1}+\delta_{3}\right) x-\left(\delta_{2}+\delta_{3}\right) y+O\left(\epsilon_{\text {mach }}^{2}\right)\right|}{|x-y|}$
The bad case is where $\delta_{1}=\epsilon_{\text {mach }}, \delta_{2}=-\epsilon_{\text {mach }}, \delta_{3}=0$: $\frac{|z-\hat{z}|}{|z|}=\epsilon_{\text {mach }}^{|x+y|}|x-y|$ Inaccuracy if $|x+y| \gg|x-y|$ called catas${ }_{\text {trophic calcellation. }}^{|z|}=\epsilon_{\text {mach }}|x-y|$

Conditioning \& Backwards Stability

A problem instance is ill conditioned if the solution is sensitive to perturbations of the data. For example, $\sin 1$ is well conditioned, but $\sin 12392193$ is ill conditioned.

Suppose we perturb $A \mathbf{x}=\mathbf{b}$ by $(A+E) \hat{\mathbf{x}}=\mathbf{b}+\mathbf{e}$ where $\frac{\|E\|}{\|A\|} \leq \delta, \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \leq \delta$. Then $\frac{\|\hat{\mathbf{x}}+\mathbf{x}\|}{\|\mathbf{x}\|} \leq 2 \delta \kappa(A)+O\left(\delta^{2}\right)$, where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is the condition number of A

1. $\forall A \in \mathbb{R}^{n \times n}, \kappa(A) \geq 1$. 4. For diagonal D and all p,
2. $\kappa(I)=1$.

For diagonal D and all p,
$\|D\|_{p}=\max _{i=1 . . n}\left|d_{i i}\right|$.
3. If $\gamma \neq 0, \kappa(\gamma A)=\kappa(A) . \quad$ So, $\kappa(D)=\frac{\max _{i=1}, \ldots, n\left|d_{i n}\right|}{\min _{i=1} \mid \ldots n}\left|d_{i i}\right|$

If $\kappa(A) \geq \frac{1}{\epsilon_{\text {mach }}}, A$ may as well be singular.
An algorithm is backwards stable if in the presence of roundoff error it returns the exact solution to a nearby problem instance.
GEPP solves $A \mathbf{x}=\mathbf{b}$ by returning $\hat{\mathbf{x}}$ where $(A+E) \hat{\mathbf{x}}=\mathbf{b}$.
It is backwards stable if $\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \leq O\left(\epsilon_{\text {mach }}\right)$. With GEPP,
$\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \leq c_{n} \epsilon_{\text {mach }}+O\left(\epsilon_{\text {mach }}^{2}\right)$, where c_{n} is worst case exponen-
tial in n, but in practice almost always low order polynomial.
Combining stability and conditioning analysis yields $\frac{\|\hat{\mathbf{x}}-\mathbf{x}\|}{\|\mathbf{x}\|} \leq$
$c_{n} \cdot \kappa(A) \epsilon_{\text {mach }}+O\left(\epsilon_{\text {m }}\right.$
The determinant det: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ satisfies:
$\begin{array}{ll}\text { 1. } \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) . & \text { 4. } \operatorname{det}(L)=\ell_{1,1} \ell_{2,2} \\ \text { 2. } \operatorname{det}(A)=0 \text { iff } A \text { singular. } & \text { for triangular } L .\end{array}$
2. $\operatorname{det}(A)=0$ iff A singular.

To compute $\operatorname{det}(A)$ factor $A=P^{T} L U . \operatorname{det}(P)=(-1)^{s}$ where P performs s swaps, $\operatorname{det}(L)=1$. When calculating $\operatorname{det}(U)$, beware of overflow!

Orthogonal Matrices

For $Q \in \mathbb{R}^{n \times n}$, these statements are equivalent:

1. $Q^{T} Q=Q Q^{T}=I$ (i.e., Q is orthogonal)
2. The $\|\cdot\|_{2}=1$ for each row and column of Q. The inner product of any row (or column) with another is 0 .
3. For all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|_{2}=\|\mathbf{x}\|_{2}$.

A matrix $Q \in \mathbb{R}^{m \times n}$ with $m>n$ has orthonormal columns if the columns are orthonormal, and $Q^{T} Q=I$. The product of orthogonal matrices is orthogonal. For orthogonal $Q,\|Q A\|_{2}=\|A\|_{2}$ and $\|A Q\|_{2}=\|A\|_{2}$.

Positive Definite, $A=L D L^{T}$

$A \in \mathbb{R}^{n \times n}$ is positive definite (PD) (or semidefinite (PSD)) if
$\mathbf{x}^{T} A \mathbf{x}>0\left(\right.$ or $\left.\mathbf{x}^{T} A \mathbf{x} \geq 0\right)$.
When $L U$-factorizing symmetric A, the result is $A=L D L^{T}$, L is unit lower triangular, D is diagonal. A is SPD iff D has all positive entries. The Cholesky factorization is $A=L D L^{T}=$ $L D^{1 / 2} D^{1 / 2} L^{T}=G G^{T}$. Can be done directly in $\frac{n^{3}}{3}+O\left(n^{2}\right)$ flops. If G 's diagonal is positive, A is SPD.
To solve $A \mathbf{x}=\mathbf{b}$ for $\operatorname{SPD} A$, factor $A=G G^{T}$, solve $G \mathbf{w}=\mathbf{b}$ by forward substitution, then solve $G^{T} \mathbf{x}=\mathbf{w}$ with backwards substitution, which takes $\frac{n^{3}}{3}+O\left(n^{2}\right)$ flops.

For $A \in \mathbb{R}^{m \times n}$, if $\operatorname{rank}(A)=n$, then $A^{T} A$ is SPD.

QR-factorization

For any $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, we can factor $A=Q R$, where $Q \in \mathbb{R}^{m \times m}$ is orthogonal, and $R=\left[\begin{array}{cc}R_{1} & 0\end{array}\right]^{T}$
triangular. $\operatorname{rank}(A)=n$ iff R_{1} is invertible $\quad \in \mathbb{R}$ is uppe
Q 's first n (or last $m-n$) columns form an orthonormal basis for span(A) (or nullspace (A^{T}))

A Householder reflection is $H=I-\frac{2 \mathbf{v v}^{T}}{\mathbf{V}^{T} \mathrm{~V}} . H$ is symmetric
and orthogonal. Explicit H.H. QR-factorization is:
1: for $k=1: n$ do
$\mathbf{v}=A(k: m, k) \pm\|A(k: m, k)\|_{2} \mathbf{e}^{2}$
$A(k: m, k: n)=\left(I-\frac{2 \mathbf{v}^{T}}{\mathbf{v}^{T} \mathbf{v}}\right) A(k: m, k: n)$
4: end for
We get $H_{n} H_{n-1} \cdots H_{1} A=R$, so then, $Q=H_{1} H_{2} \cdots H_{n}$. This takes $2 m n^{2}-\frac{2}{3} n^{3}+O(m n)$ flops.

Givens requires 50% more flops. Preferable for sparse A. The Gram-Schmidt produces a skinny/reduced QRcactorization $A=Q_{1} R_{1}$, where $Q_{1} \in \mathbb{R}$. The Gram-Schmidt algorithm is
Left Looking
Right Looking
for $k=1: n$ d
1: $Q=A$
$\underset{\mathbf{q}_{k}}{ }=\mathbf{a}_{k}$
2: for $k=1: n$ do
for $j=1: k-1$ do
$R(j, k)=\mathbf{q}_{j}^{T} \mathbf{a}_{k}$
$\mathbf{q}_{k}=\mathbf{q}_{k}-R(j, k) \mathbf{q}_{j}$
$R(k, k)=\left\|\mathbf{q}_{k}\right\|_{2}$
$\quad \mathbf{q}_{k}=\mathbf{q}_{k}-R(j, k) \mathbf{q}_{j} \quad$ 5: \quad for $j=k+1: n$ do
end for
$R(k, k)=\left\|\mathbf{q}_{k}\right\|_{2}$
$\mathbf{q}_{k}=\mathbf{q}_{k} / R(k, k)$
$R(k, j)=\mathbf{q}_{k}^{T} \mathbf{q}_{j}$
$\mathbf{q}_{j}=\mathbf{q}_{j}-R$
$\mathbf{q}_{j}=\mathbf{q}_{j}-R(k, j) \mathbf{q}$
9. end for 9: end for

In left looking, let line 4 be $R(j, k)=\mathbf{q}_{j}^{T} \mathbf{q}_{k}$ for modified G.S

Basic Linear Algebra Subroutines

0 . Scalar ops, like $\sqrt{x^{2}+y^{2}}$. $O(1)$ flops, $O(1)$ data.

1. Vector ops, like $\mathbf{y}=a \mathbf{x}+\mathbf{y} . O(n)$ flops, $O(n)$ data
2. Matrix-vector ops, like rank-one update $A=A+\mathrm{xy}^{T}$ $O\left(n^{2}\right)$ flops, $O\left(n^{2}\right)$ data.
3. Matrix-matrix ops, like $C=C+A B . O\left(n^{3}\right)$ flops, $O\left(n^{2}\right)$ data.
Use the highest BLAS level possible. Operators are architec ture tuned, e.g., data processed in cache-sized bites

Linear Least Squares

Suppose we have points $\left(u_{1}, v_{1}\right), \ldots,\left(u_{5}, v_{5}\right)$ that we want to fit
Suppose we have points $\left(u_{1}, v_{1}, \ldots,\left(u_{5}, v_{5}\right)\right.$ that we want to
a quadratic curve $a u^{2}+b u+c$ through. We want to solve for:
$\left[\begin{array}{lll}u_{1}^{2} & u_{1} & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{c}v_{1} \\ \vdots\end{array}\right]$ This is overdetermined so an exact solution is out. Instead, find the \mathbf{x} that minimizes $\|A x-b\|_{2}$
For the method of normal equations, solve for \mathbf{x} in $A^{T} A \mathbf{x}$ $A^{T} \mathbf{b}$ with Cholesky factorization. This takes $m n^{2}+\frac{n^{3}}{3}+O(m n)$ flops. It is conditionaly but not backwards the condition numbe

Alternatively, factor $A=Q R$. Let $\mathbf{c}=\left[\begin{array}{ll}\mathbf{c}_{1} & \mathbf{c}_{2}\end{array}\right]^{T}=Q^{T} \mathbf{b}$. The least squares solution is $\mathbf{x}=R_{1}^{-1} \mathbf{c}_{1}$.
If $\operatorname{rank}(A)=r$ and $r<n$ (rank deficient), factor $A=$ $U \Sigma V^{T}$, let $y=V^{T} x$ and $c=U^{T} b$. Then, $\min \|A \mathbf{x}-\mathbf{b}\|_{2}=$
$\min \sqrt{\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{m} c_{i}^{2}}$, so $y_{i}=\frac{c_{i}}{\sigma_{i}}$. For $i=r+1$

n, y_{i} is arbitrar

Singular Value Decomposition

for any $A \in \mathbb{R}^{m \times n}$, we can express $A=U \Sigma V^{T}$ such that $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma=$ $\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}$ where $p=\min (m, n)$ and $\sigma_{1} \geq \sigma_{2} \geq$
$\geq \sigma_{p} \geq 0$. The σ_{i} are singular values.

1. Matrix 2 -norm, where $\|A\|_{2}=\sigma_{1}$.
2. The condition number $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma}$, or rect angular condition number $\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{\operatorname{m}}}$. Note that $\kappa_{2}\left(A^{T} A\right)=\kappa_{2}(A)^{2}$.
3. For a rank k approximation to A, let $\Sigma_{k}=$ $\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}, \mathbf{0}^{T}\right)$. Then $A_{k}=U \Sigma_{k} V^{T} \cdot \operatorname{rank}\left(A_{k}\right) \leq k$ and $\operatorname{rank}\left(A_{k}\right)=k$ iff $\sigma_{k}>0$. Among
matrices, A_{k} minimizes $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$
4. Rank determination, since $\operatorname{rank}(A)=r$ equals the num ber of nonzero σ, or in machine arithmetic, perhaps the number of $\sigma \geq \epsilon_{\text {mach }} \times \sigma_{1}$.
$A=U \Sigma V^{T}=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]\left[\begin{array}{cc}\Sigma(1: r, 1: r) & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$

See that $\operatorname{range}\left(U_{1}\right)=\operatorname{range}(A)$. The SVD gives an orthonorma basis for the range and nullspace of A and A^{T}

Compute the SVD by using shifted QR on $A^{T} A$

Information Retrival \& LSI

In the bag of words model, $\mathbf{w}_{d} \in \mathbb{R}^{m}$, where $\mathbf{w}_{d}(i)$ is the (perhaps weighted) frequency of term i in document d. The corpu matrix is $A=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{n}\right] \in \mathbb{R}^{m \times n}$. For a query $\mathbf{q} \in \mathbb{R}^{m}$, rank documents according to a $\frac{\mathbf{q}^{T} \mathbf{w}_{d}}{\left\|\mathbf{w}_{d}\right\|_{2}}$ score.

In latent semantic indexing, you do the same, but in a k dimensional subspace. Factor $A=U \Sigma V^{T}$, then define k dimensional subspace. Factor $A=\Sigma_{1: k, 1: k}^{T} V_{+1 . k}^{T} \in \mathbb{R}^{k \times n}$. Each $\mathbf{w}_{d}^{*}=A_{*}^{*}=U^{T}{ }^{T} \cdot k \mathbf{w}_{d}$, and $\mathbf{q}^{*}=U_{:: 1: k}^{T} \mathbf{q}$.
In the Ando-Lee analysis, for a corpus with k topics, for $\in 1: k$ and $d \in 1: n$, let $R_{t, d} \geq 0$ be document d 's relevance to opic $t .\left\|R_{i, d}\right\|_{2}=1$. True document information about $R R^{T}$ then $\left(A^{*}\right)^{T} A^{*}$ will approximate $R R^{T}$ well. LSI dends on distribution of topics, whe distribur ion is $\rho=\frac{\max _{t}\left\|R_{t, \|}\right\|_{2}}{\min _{t}\left\|R_{t} ;\right\|_{2}}$. Great for ρ is near 1 , but if $\rho \gg 1$, LS does wors

Complex Numbers

Complex numbers are written $z=x+i y \in \mathbb{C}$ for $i=\sqrt{-1}$. The
real part is $x=\Re(z)$. The imaginary part is $y=\Re(z)$.
The conjugate of z is $\bar{z}=x-i y$. $\bar{A} \overline{\mathbf{x}}=\overline{(A \mathbf{x})}, \bar{A} \bar{B}=\overline{(A B)}$
The absolute value of z is $|z|=\sqrt{x^{2}+y^{2}}$.
The conjugate transpose of \mathbf{x} is $\mathbf{x}^{H}=(\overline{\mathbf{x}})^{T} . A \in \mathbb{C}^{n \times n}$; Hermitian or self-adjoint if $A=A^{H}$.
Hermitian or self-adjoint if A
If $Q^{H} Q=I, Q$ is unitary.

Eigenvalues \& Eigenvectors

For $A \in \mathbb{C}$, if $A \mathbf{x}=\lambda \mathbf{x}$ where $\mathbf{x} \neq 0, \mathbf{x}$ is an eigenvector of A and λ is the corresponding eigenvalue.
Remember, $A-\lambda \mathbf{x}$ is singular iff $\operatorname{det}(A-\lambda I)=0$. With λ a variable, $\operatorname{det}(A-\lambda I)$ is A 's characteristic polynomial.
For nonsingular $T \in \mathbb{C}^{n \times n}, T^{-1} A T$ (the similarity transfor mation) is similar to A. Similar matrices have the same char acteristic polynomial and hence the same eigenvalues (thoug probably different eigenvectors). This relationship is reflexive ransitive, and symmetric.
A is diagonalizable if A is similar to a diagonal matrix $D=T^{-1} A T$. A's eigenvalues are D 's diagonals, and the eigen vectors are columns of T since $A T_{:, i}=D_{i, i} T_{:, i} . A$ is diagonaliz able iff it has n linearly independent eigenvectors.
For symmetric $A \in \mathbb{R}^{n \times n}, A$ is diagonalizable, has all rea eigenvalues, and the eigenvectors can be the columns of an orthogonal matrix Q where $A=Q D Q^{T}$ is the eigendecomposition of A. Further, for symmetric A :

1. The singular values are absolute values of eigenvalues.
2. Is SPD (or SPSD) iff eigenvalues >0 (or ≥ 0).
3. For SPD, singular values equal eigenvalues.
4. For $B \in \mathbb{R}^{m \times n}, m \geq n$, singular values of B are the square roots of $B^{T} B$'s eigenvalues.
For any $A \in \mathbb{C}^{n \times n}$, the Schur form of A is $A=Q T Q^{H}$ with unitary $Q \in \mathbb{C}^{n \times n}$ and upper triangular $T \in \mathbb{C}^{n \times n}$.

In this sheet I denote $\lambda_{|\max |}=\max _{\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}}|\lambda|$.

For $B \in \mathbb{C}^{n \times n}$, then $\lim _{k \rightarrow \infty} B^{k}=0$ if $\lambda_{|\max |}(B)<1$.

Power Methods for Eigenvalues

$\mathbf{x}^{(k+1)}=A \mathbf{x}^{(k)}$ converges to $\lambda_{\text {max| }}(A)$'s eigenvector

Once you find an eigenvector \mathbf{x}, find the associated eigenvalue λ through the Raleigh quotient $\lambda=\frac{\mathbf{x}^{(k)} A \mathbf{x}^{(k)}}{\mathbf{x}^{(k)} \mathbf{x}^{(k)}}$.

The inverse shifted power method is $\mathbf{x}^{(k+1)}=(A-\sigma I)^{-1} \mathbf{x}^{(k)}$.
A has eigenpairs $\left(\mathbf{x}^{(k)}\right.$ If A has eigenpairs $\left(\lambda_{1}, \mathbf{u}_{1}\right), \ldots,\left(\lambda_{n}, \mathbf{u}_{n}\right)$, then $(A-\sigma I)^{-1}$ has eigenpairs $\left(\frac{1}{\lambda_{1}-\sigma}, \mathbf{u}_{1}\right), \ldots,\left(\frac{1}{\lambda_{n}-\sigma}, \mathbf{u}_{n}\right)$. Factor $A=Q H Q^{T}$ where H is upper Hessenberg.

To factor $A=Q H Q^{T}$, find successive Householder reflections H_{1}, H_{2}, \ldots that zero out rows 2 and lower of column 1 , rows 3 and lower of column 2, etc. Then $Q=H_{1}^{T} \cdots H_{n-2}^{T}$.
1: $A^{(0)}=A \quad A^{(k)}$ is similar to A by the 2: for $k=0,1,2, \ldots$ do \quad orthogonal transform $U^{(k)}=$: $\quad A^{(k+1)}=R^{(k)} Q^{(k)}+\sigma^{(k)} I \quad$ choose $\sigma^{(k)}$ as eigenvalues of 5: end for submatrices of A.

Arnoldi and Lanczos

Given $A \in \mathbb{R}^{n \times n}$ and unit length $\mathbf{q}_{1} \in \mathbb{R}^{n}$, output Q, H such
that $A=Q H Q^{T}$. Use Lanczos for that $A=Q H Q^{T}$. Use Lanczos for symmetric A.

Arnoldi	Lanczos		
1: for $k=1: n-1$ do	1: $\beta_{0}=\left\\|\mathbf{w}_{0}\right\\|_{2}$		
2: $\quad \tilde{\mathbf{q}}_{k+1}=A \mathbf{q}_{k}$	2: for $k=1,2, \ldots$ do		
for $\ell=1: k$ do	3: $\quad \mathbf{q}_{k}=\frac{\mathbf{w}_{k-1}}{\beta_{k-1}}$		
4: $\quad H(\ell, k)=\mathbf{q}_{\ell}^{T} \tilde{\mathbf{q}}_{k+1}$	4: $\quad \mathbf{u}_{k}=A \mathbf{q}_{k}$		
$\tilde{\mathbf{q}}_{k+1}=\tilde{\mathbf{q}}_{k+1}-H(\ell, k) \mathbf{q}_{\ell}$	5: $\quad \mathbf{v}_{k}=\mathbf{u}_{k}-\beta_{k-1} \mathbf{q}_{k-1}$		
6: end for	6: $\quad \alpha_{k}=\mathbf{q}_{k}^{T} \mathbf{v}_{k}$		
7: $\quad H(k+1, k)=\left\\|\tilde{\mathbf{q}}_{k+1}\right\\|_{2}$	$7: \quad \mathbf{w}_{k}=\mathbf{v}_{k}-\alpha_{k} \mathbf{q}_{k}$		
8: $\quad \mathbf{q}_{k+1}=\frac{\mathbf{q}_{k+1}}{H(k+1, k)}$	8: $\quad \beta_{k}=\left\\|\mathbf{w}_{k}\right\\|_{2}$		
9: end for	9: end for		

For Lanczos, the α_{k} and β_{k} are diagonal and subdiagonal enAfter very few iterations of either method, the eigenvalues of T_{k} and H will be excellent approximations to the "extreme" eigenvalues of A.

For k iterations, Arnoldi is $O\left(n k^{2}\right)$ times and $O(n k)$ space, Lanczos is $O(n k)+k \cdot \mathcal{M}$ time (\mathcal{M} is time for matrix-vector multiplication) and $O(n k)$ space, or $O(n+k)$ space if old \mathbf{q}_{k} 's are discarded.

Iterative Methods for $A \mathbf{x}=\mathbf{b}$
 Useful for sparse A where GE would cause fill-in.

In the splitting method, $A=M-N$ and $M \mathbf{v}=\mathbf{c}$ is easily solvable. Then, $\mathbf{x}^{(k+1)}=M^{-1}\left(N \mathbf{x}^{(k)}\right.$

The error is $\mathbf{e}^{(k)}=\left(M^{-1} N\right)^{k} \mathbf{e}_{0}$, so splitting methods converge if $\lambda_{|\max |}\left(M^{-1} N\right)<1$.

In the Jacobi method, consider M as the diagonals of A. This

will fail if A has any zero diagonals.

Conjugate Gradient

Conjugate gradient iteratively solves $A \mathbf{x}=\mathbf{b}$ for SPD A. It is derived from Lanczos and exploits that if A is SPD then T is SPD. It produces the exact solution after n iterations. Time per iteration is $O(n)+\mathcal{M}$.
1: $\mathbf{x}^{(0)}=\operatorname{arbitrary}(\mathbf{0}$ is okay)

2: $\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}^{(0)}$

3: $\mathbf{p}_{0}=\mathbf{r}_{0}$
4: for $\mathrm{k}=0,1,2, \ldots$ do
$\begin{array}{ll}5: & \alpha_{k}=\left(\mathbf{r}_{k}^{T} \mathbf{r}_{k}\right) /\left(\mathbf{p}_{k}^{T} A \mathbf{p}_{k}\right) \\ 6: & \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{p}_{k}\end{array}$
$\mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} A \mathbf{p}_{k}$
8: $\beta_{k+1}=\left(\mathbf{r}_{k+1}^{T} \mathbf{r}_{k+1}\right) /\left(\mathbf{r}_{k}^{T} \mathbf{r}_{k}\right)$
9: $\quad \mathbf{p}_{k+1}=\mathbf{r}_{k+1}-\beta_{k+1} \mathbf{p}_{k}$

10: end for

Multivariate Calculus

Provided $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient and Hessian are
$\nabla f=\left[\begin{array}{c}\frac{\delta f}{\delta x_{1}} \\ \vdots \\ \frac{\delta f}{\delta x_{n}}\end{array}\right], \nabla^{2} f=\left[\begin{array}{cccc}\frac{\delta^{2} f}{\delta x_{1}^{2}} & \frac{\delta^{2} f}{\delta x_{1} \delta x_{2}} & \cdots & \frac{\delta^{2} f}{\delta x_{1} \delta x_{n}} \\ \vdots & & & \vdots \\ \frac{\delta^{2} f}{\delta x_{n} \delta x_{1}} & \frac{\delta^{2} f}{\delta x_{n} \delta x_{2}} & \cdots & \frac{\delta^{2} f}{\delta x_{n}^{2}}\end{array}\right.$

If f is c^{2} (2 $2^{\text {nd }}$ partials are all continuous), $\nabla^{2} f$ is symmetric
The Taylor expansion for f is
$f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\mathbf{h}^{T} \nabla f(\mathbf{x})+\frac{1}{2} \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)$
Provided $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Jacobian is
$\nabla \mathrm{f}=$

$$
\delta f_{m} / \delta x_{1}
$$

$$
\left.\delta f_{m} / \delta x_{n}\right]
$$

\mathbf{f} 's Taylor expansion is $\mathbf{f}(\mathbf{x}+\mathbf{h})=\mathbf{f}(\mathbf{x})+\nabla \mathbf{f}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right)$.
A linear (or quadratic) model approximates a function \mathbf{f} by the first two (or three) terms of \mathbf{f} 's Taylor expansion.

Nonlinear Equation Solving

In $: \mathbb{R}^{\mathbb{R}} \rightarrow \mathbb{R}^{m}$, we want \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
In fixed point iteration, we choose $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that
 $\begin{aligned} \mathbf{g}\left(\mathbf{x}^{(k)}\right) & =\mathbf{g}\left(\mathbf{x}^{*}\right)+\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)+O\left(\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|^{2}\right) \text { For } \\ \text { mall } \mathbf{e}^{(k)} & =\mathbf{x}^{(k)}-\mathbf{x}^{*} \text {, ignore the last term. If } \nabla \mathbf{g}\left(\mathbf{x}^{*}\right) \text { b }\end{aligned}$ $\lambda_{|\max |}<1$, then $\mathbf{x}^{(k)} \rightarrow \mathbf{x}^{*}$ as $\left\|\mathbf{e}^{(k)}\right\| \leq c^{k}\left\|\mathbf{e}^{(0)}\right\|$ for large k, where $c=\lambda_{\mid \text {max } \mid}+\epsilon$, where ϵ is the influence of the ignored last term. This indicates a linear rate of convergence.
Suppose for $\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)=Q T Q^{H}, T$ is non-normal, i.e., T 's superdiagonal portion is large relative to the diagonal. Then this may not converge as $\left\|\left(\nabla \mathrm{g}\left(\mathrm{x}^{*}\right)\right)^{k}\right\|$ initially grows!

In Newton's method, $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left(\nabla \mathbf{f}\left(\mathbf{x}^{(k)}\right)\right)^{-1} \mathbf{f}\left(\mathbf{x}^{(k)}\right)$. This converges quadratically, i.e., $\left\|\mathbf{e}^{(k+1)}\right\| \leq c\left\|\mathbf{e}^{(k)}\right\|^{2}$.

Automatic differentiation takes advantage of the notion that a computer program is nothing but arithmetic operations, and one can apply the chain rule to get the derivative

Optimization

In continuous optimization, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the $\min \quad f(\mathbf{x})$ $\begin{array}{ll}\text { objective function, } \mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { holds equal- } & \\ \text { ity constraints, } \mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \text { holds inequality } & \mathbf{g}(\mathbf{x})=\mathbf{0}\end{array}$ ity constraints, $\mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ holds inequality $\begin{array}{ll}\text { s.t. } & \mathbf{g}(\mathbf{x})=\mathbf{0} \\ \text { constraints. } & \mathbf{h}(\mathbf{x}) \geq \mathbf{0}\end{array}$
We did unrestricted optimization $\min f(\mathbf{x})$ in the course.
A ball is a set $B(\mathbf{x}, r)=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{y}\|<r\right\}$.
We have local minimizers \mathbf{x}^{*} which are the best in a region, i.e., $\exists r>0$ such that $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in B\left(\mathbf{x}^{*}, r\right)$. A global minizer is the best local minimizer.

Assume f is c^{2}. If \mathbf{x}^{*} is a local minimizer, then $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is PSD. Semi-conversely, if $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is PD, then \mathbf{x}^{*} is a local minimizer.

Steepest Descent

Go where the function (locally) decreases most rapidly via $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha_{k} \nabla f\left(\mathbf{x}^{(k)} . \alpha_{k}\right.$ is explained later. SD is stateless: depends only on the current point. Too slow.
Newton's Method for Unconstrained Min. Iterate by $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left(\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$, derived by solving for where $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$. If $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ is PD and
$\nabla f\left(x^{(}\right) \neq 0$, the step is a descent direction.
What if the Hessian isn't PD? Use (a) secant method, (b) direction of negative curvature where $\mathbf{h}^{T} \nabla^{2} f\left(\mathbf{x}^{(k)}\right) \mathbf{h}<0$ where \mathbf{h} or $-\mathbf{h}$ (doesn t work well in practice), (c) trust region idea and SD) (d) factor $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ by Cholesky when checking for PD, PD, detect 0 pivots, modify that diagonal in $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ and ke
going (unjustified by theory, but works in practice).

Line Search

Line search, given $\mathbf{x}^{(k)}$ and step \mathbf{h} (perhaps derived from SD or
NMUM), finds a $\alpha>0$ for $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha \mathbf{h}$.
In exact line search, optimize $\min f\left(\mathbf{x}^{(k)}+\alpha \mathbf{h}\right)$ over α Frowned upon because it's computationally expensive.
In Armijo or backtrack line search, initialize α. While $f\left(\mathbf{x}^{(k)}+\alpha \mathbf{h}\right)>f\left(\mathbf{x}^{(k)}\right)+0.1 \alpha \nabla f\left(\mathbf{x}^{(k)}\right)^{T} \mathbf{h}$, halve α.
Secant/quasi Newton methods use an approximate always PD
$\nabla^{2} f$. In Broyden-Fletcher-Goldfarb-Shanno:
1: $B_{0}=$ initial approximate Hessian $\{\mathrm{OK}$ to use I. $\}$
2: for $k=0,1,2, \ldots$ do
3: $\quad \mathbf{s}_{k}=-B_{k}^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)$
4: $\quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{s}_{k}\left\{\right.$ Use special line search for α_{k} ! $\}$
5: $\quad \mathbf{y}_{k}=\nabla f\left(\mathbf{x}^{(k+1)}\right)-\nabla f\left(\mathbf{x}^{(k)}\right)$
$B_{k+1}=B_{k}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\alpha \mathbf{y}_{k}^{T} \mathbf{s}_{k}}-\frac{B_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{T} B_{k}}{\mathbf{s}_{k}^{T} B_{k} \mathbf{s}_{k}}$
7: end for
myaintaining B_{k} in factored form, can iterate in $O\left(n^{2}\right)$ flops. B_{k} is SPD provided $\mathbf{s}_{k}^{T} \mathbf{y}>0$ (use line search to increase α_{k} if needed). The secant condition $\alpha_{k} B_{k+1} \mathbf{s}_{k}=\mathbf{y}_{k}$ holds. If BFCS

Non-linear Least Squares

For $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \geq n$, we want the \mathbf{x} for $\min \|\mathbf{g}(\mathbf{x})\|_{2}$
In the Gauss-Newton method, $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\mathbf{h}$ where $\mathbf{h}=\left(\nabla \mathbf{g}(\mathbf{x})^{T} \nabla \mathbf{g}(\mathbf{x})\right)^{-1} \nabla \mathbf{g}(\mathbf{x})^{T} \mathbf{g}(\mathbf{x})$. Note that \mathbf{h} is a solution to a linear least squares problem min $\left\|\nabla \mathbf{g}\left(\mathbf{x}^{(k)}\right) \mathbf{h}-\mathbf{g}\left(\mathbf{x}^{(k)}\right)\right\|!$ G is derived by applying NMUM to to $\mathbf{g}(\mathbf{x})^{T} \mathbf{g}(\mathbf{x})$, and dropping a resulting tensor (derivative of Jacobian). You keep the quadrat

Ordinary Differential Equations

ODE (or PDE) has one (or multiple) independent variables.
In initial value problems, given $\frac{d \mathbf{y}}{d t}=f(\mathbf{y}, t), \mathbf{y}(t) \in \mathbb{R}^{n}$, and
$\mathbf{y}(0)=\mathbf{y}_{0}$, we want $\mathbf{y}(t)$ for $t>0$. Examples include

1. Exponential growth/decay with $\frac{d y}{d t}=a \mathbf{y}$, with closed form $\mathbf{y}(t)=\mathbf{y}_{0} e^{a}$. Growth if $a>0$, decay if $a<0$.
2. Ecological models, $\frac{d y_{i}}{d t}=f_{i}\left(y_{1}, \ldots, y_{n}, t\right)$ for species $i=$ $1, \ldots, n$. y_{i} is population size, f_{i} encodes species relationships.
3. Mechanics, e.g. wall-spring-block models for $F=m a$ $\left(a=\frac{d^{2} x}{d t^{2}}\right)$ and $F=-k x$, so $\frac{d^{2} x}{d t^{2}}=\frac{-k x}{m}$. Yields $\frac{d[x, v]^{T}}{d t}=$ $\left[\begin{array}{cc}v & \frac{-k x}{m}\end{array}\right]^{T}$ with \mathbf{y}_{0} as initial position and velocity.
For stability of an $O D E$, let $\frac{d \mathbf{y}}{d t}=A \mathbf{y}$ for $A \in \mathbb{C}^{n \times n}$. The stable or neutrally spable or unstable case is where $\max _{i} \Re\left(\lambda_{i}(A)\right)<$ 0 or $=0$ or >0 respectively
In finite difference methods, approximate $\mathbf{y}(t)$ by discrete oints \mathbf{y}_{0} (given), $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots$ so $\mathbf{y}_{k} \approx \mathbf{y}\left(t_{k}\right)$ for increasing t_{k}
For many IVPs and FDMs, if the local truncation error (eror at each step) is $O\left(h^{p+1}\right)$, the global truncation error (erro overall) is $O\left(h^{p}\right)$. Call p the order of accuracy

To find p, substitute the exact solution into FDM formula, in sert a remainder term $+R$ on RHS, use a Taylor series expansion, solve for R, keep only the leading term.
In Euler's method, let $\mathbf{y}_{k+1}=\mathbf{y}_{k}+\mathbf{f}\left(\mathbf{y}_{k}, t_{k}\right) h_{k}$ where $h_{k}=$ $t_{k+1}-t_{k}$ is the step size, and $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y}, t)$ is perhaps compute by finite difference. $p=1$, very low. Explicit!

A stiff problem has widely ranging time scales in the soluion, e.g., a transient initial velocity that in the true solution disappears immediately, chemical reaction rate variability ove temperature, transients in electical circuits. An explicit method requires h_{k} to be on the smallest scale
Backward Euler has $\mathbf{y}_{k+1}=\mathbf{y}_{k}+h \mathbf{f}\left(\mathbf{y}_{k+1}, t_{k+1}\right)$. BE is $i m$ plicit (\mathbf{y}_{k+1} on the RHS). If the original program is stable, any h will work!

Miscellaneous

$\sum_{k=1}^{n \pm \text { constant }} k^{p}=\frac{n^{p+1}}{p+1}+O\left(n^{p}\right)$
$a x^{2}+b x+c=0 . r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \cdot r_{1} r_{2}=\frac{c}{a}$
Exact arithmetic is slow, futile for inexact observations, and NA relies on approximate algorithms.

